Usefulness of temperature monitoring system TEMPLE TOUCH PR⊙™ in off-pump coronary artery bypass surgery

Obihiro Kosei Hospital Anesthesiology Department, Yutaro chida Sapporo Medical University School of Medicine Anesthesiology, Shunsuke Tachibana / Michiaki Yamakage

Introduction

Monitoring and maintaining body temperature is important in anesthesia management because intraoperative hypothermia causes various perioperative complications. TEMPLE TOUCH PRO™ (TTP, manufactured by MEDISIM LIMITED), a continuous core temperature monitoring system, is a device that allows non-invasive and simple measurement of core temperature by attaching a sensor to temple [Fig. 1].

In this study, we examined the usefulness of TTP by comparing with the pulmonary artery temperature in off-pump coronary artery bypass surgery (OPCAB).

About Temple Touch Pro

TTP measures the heat flow from the temporal artery to the skin surface with a sensor attached to the temple, and calculates the core temperature [Figs. 2 and 3].

Figure 1. TTP and Sensor

Figure 2. TTP Technology

Figure 3. Attaching Sensor

Usefulness of temperature monitoring system TEMPLE TOUCH PRO™ in off-pump coronary

artery bypass surgery

Method

This study was reviewed and approved by the ethics committee of Sapporo Medical University Hospital and Obihiro Kosei Hospital (approval number: 272-53, 2016-008), and we obtained written informed consent from all patients.

- 7 adult patients need to undergo OPCAB under general anesthesia [Table 1]
- > After induction of general anesthesia, and placement of a pulmonary artery catheter (model 744F75, Edwards Life Science) from the right internal jugular vein, a TTP sensor was attach to the temple. The pulmonary artery temperature (PAT) and the core temperature were measured by TTP (TTTP) every 5 minutes [Fig. 4].
- Statistical correlation, Bland-Altman analysis

Result

Data set of 407 points and 7 cases were analyzed [Figs. 4 and 5]. There were no complications associated with sensor attachment found in all cases.

Discussion

Compared to other measurement methods (pulmonary artery temperature, esophageal temperature, bladder temperature, rectal temperature, etc.), TTP is non-invasive, easy to use, and allows accurate measurement. In addition, the time required from setup to start of measurement is short, and a stable temperature can be displayed only a few seconds. For cardiac anesthesia, TTP is highly useful because there is not enough space of the forehead due to the attachment of other monitoring sensors (BIS, INVOS, etc.)..

Conclusion

It was suggested that TTP could be used for accurate monitoring the core temperature during OPCAB cases. With non-invasiveness and convenience of use, further clinical use can be expected.

Source: 22th Japanese Society of Cardiac Anesthesiologists, September 16th-18th, 2017

Table 1. Patients' Background

	Mean ± SD	Range
Age	71 ± 7	58-80
BMI [Kg/m2]	23.1 ± 2.8	19.8-27.7
Anesthesia Time [minutes]	359 ± 59	240-412
Surgery Time [minutes]	281 ± 55	171-332

Figure 4. Measurement Protocol

Figure 4. Pearson's correlation

Figure 5. Bland-Altman plot

high accuracy